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Abstract. In this paper, we will propose an efficient heuristic algorithm for solving concave quadratic
programming problems whose rank of the objective function is relatively small. This algorithm is a
combination of Tuy’s cutting plane to eliminate the feasible region and a kind of tabu-search method
to find a ‘good’ vertex. We first generate a set ofV of vertices and select one of these vertices as a
starting point at each step, and apply tabu-search and Tuy’s cutting plane algorithm where the list
of tabu consists of those vertices eliminated by cutting planes and those newly generated vertices
by cutting planes. When all vertices of the setV are eliminated, the algorithm is terminated. This
algorithm need not converge to a global minimum, but it can work very well when the rank is
relatively small (up to seven). The incumbent solutions are in fact globally optimal for all tested
problems. We also propose an alternative algorithm by incorporating Rosen’s hyperrectangle cut.
This algorithm is more efficient than the combination of Tuy’s cutting plane and tabu-search.

Key words: Low rank concave quadratic programming problem, Tuy’s cutting plane, Rosen’s cutting
plane, Global optimization, Tabu-search, Heuristic algorithm

1. Introduction

Quadratic programming problems, namely the minimization of quadratic functions
under linear constraints, have been under extensive research since the early days
of mathematical programming. If the objective function is convex, then there are
a number of efficient algorithms, such as several simplex type algorithms, interior
point algorithms.

However, if the objective function is nonconvex, then the problem isNP-hard.
Therefore, it has been considered that solving a large scale nonconvex quadratic
programming problem is very difficult. In this paper, we will discuss concave
quadratic programming problems which have applications in such areas as quadratic
assignment problems, linear max- min problems, location-allocation problems and
concave cost production- transportation problems.

Efforts for solving concave quadratic programming problems have a history
of over 30 years. For a survey of this field, readers are referred to recent articles
(Benson, 1994; Floudas and Visweswaran, 1995; Konno et al., 1996). Since an
optimal solution exists among extreme points of a polytope, a number of extreme
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point enumeration methods have been proposed in early days (Murty, 1968; Cabot
and Francis, 1970). However, these naive enumeration methods can be practical
only when the size of the problem is very small.

Alternatively, a class of cutting plane algorithms have been proposed since
1970s based upon the pioneering work of Tuy (1964) for minimizing a general
concave function on a polytope. For example, one of the authors (Konno and
Saitoh, 1996) proposed a variant of Tuy’s cutting plane algorithm by exploiting
the quadratic property of the objective function. However, it turned out that the
proportion of the feasible region eliminated by cutting planes diminishes as the
dimension of the problem increases. Therefore, in practice, these cutting plane
algorithms can solve problems of limited size.

In 1983, an alternative partitioning algorithm was proposed by Rosen (1983).
This algorithm eliminates the largest hypercube inscribing a paraboloid correspond-
ing to the incumbent solution from the feasible region and then applies a branch
and bound algorithm to the residual feasible region by using successive under-
estimation method (Falk and Hoffman, 1976). This algorithm was later extended
to a fairly large scale problem with a relatively few (concave) quadratic terms in
the objective function. In fact, the computational results reported by Phillips and
Rosen (1988) is very encouraging. The remarkable efficiency of this approach, to
our understanding, is largely due to the low rank structure of the problem (Konno
et al., 1996).

In this paper, we will propose an efficient heuristic algorithm which is a com-
bination of (a) Tuy’s cutting plane method to eliminate a portion of the feasible
region and (b) a tabu-search method (Glover, 1989, 1990; Glover et al., 1993) to
find a ‘good’ extreme point. Also we will incorporate (c) Rosen’s hyperrectangle
cut to eliminate the interior of the feasible region to generate even more efficient
algorithms.

In Section 2, we will briefly describe Tuy’s cutting plane and Rosen’s cutting
plane and show that these cuts tend to eliminate a larger portion of the feasible re-
gion when the rank of the objective function is small. The details of the tabu-search
algorithm using these cuts will be presented in Section 3. There is no guarantee that
these algorithms generate a globally optimal solution. However, as demonstrated
in Section 4, these algorithms perform very well when the rank of the objective
function is small.

2. Cutting planes

2.1. TUY’ S CUTTING PLANE

Let f (x) be a concave function defined on a polytopeX. It is well known that a
global minimum off overX exists among extreme points (vertices) ofX.

A cutting plane is a linear constraint which eliminates a locally optimal solution
and yet does not eliminate a globally optimal solution. The most important and the
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Figure 1. Tuy’s cutting plane.

simplest among them is the one proposed by Tuy (1964). Figure 1 illustrates the
basic idea of Tuy’s cutting plane.

Let x̃ be a given locally optimal extreme point at which the value of the objective
function is smaller than those at neighboring vertices. Also, letE be an ellipsoid
associated with the contour off (x̂) wherex̂ is the incumbent solution. Sincef (x)
is a concave function, we havef (x) > f (x̂) for all x ∈ E. Therefore, we can
ignore the regionX ∩ E in the process of finding a global minimum off overX.
Along the edgedi emanating from̃x, we look for a pointPi at which the objective
function value is equal to the incumbent valuef (x̂). A linear constraint

atcutx 6 bcut (2.1)

determined byPi(i = 1, . . . , n) is the so-called Tuy’s cutting plane.
Let us argue that Tuy’s cut would be substantially deeper when the objective

functionf (·) is a low rank concave quadratic function. To see this, let us consider
a canonical rankp concave quadratic programming problem:∣∣∣∣∣∣∣

minimize f (x) = cT0 x −
1

2

p∑
j=1

(cTj x)
2

subject to Ax 6 b

(2.2)

wherec1, . . . , cp ∈ Rn are linearly independent set of vectors andc0 ∈ Rn, b ∈
Rm,A ∈ Rm×n wherem > n.

Let us note that a general rankp concave quadratic programming problem∣∣∣∣∣ minimize qT y + 1

2
yT Qy

subject to A′y 6 b′
(2.3)
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whereQ is a symmetric negative semi-definite matrix whose rank isp can be
converged to a canonical form.

Let x̃ be a non-degenerate locally optimal vertex. Associated withx̃ is a set of
linearly independent row vectorsail (l = 1, . . . , n) of A such thatail x̃ = bil (l =
1, . . . , n).

Let

B =
ai1...
ain

 ∈ Rn×n, N =
ain+1

...

aim

 ∈ Rm−n)×n (2.4)

and letbB andbN be, respectively the subvectors ofb corresponding toB andN .
By introducing a slack vectory corresponding toB, i.e.,

y = Bx − bB (2.5)

the feasible set of (2.2) can be represented in terms ofy as follows:

Y = {y ∈ Rn|N̄y 6 b̄N , y > 0} (2.6)

whereN̄ = NB−1 and b̄N = bN − B−1bB . Accordingly, we can represent the
objective functionf (·) in terms ofy by using the relation (2.5) as follows:

f̄ (y) = f (x̃)+
n∑
l=1

c̄0lyl − 1

2

p∑
j=1

(
n∑
l=1

c̄j lyl

)2

(2.7)

Hence we have an alternative representation of the problem (2.2):∣∣∣∣∣∣∣
minimize f̄ (y) = f (x̃)+

n∑
l=1

c̄0lyl − 1

2

p∑
j=1

(
n∑
l=1

c̄j lyl

)2

subject to N̄y 6 b̄N , y > 0

(2.8)

Sincex̃ is a local minimum,yl = 0(l = 1, . . . , n) is a feasible solution of (2.8).
Also c̄ol > 0(l = 1, . . . , n).

Let ȳl be the nonnegative solution of the quadratic equation

f (x̃)+ c̄0lyl − 1

2

p∑
j=1

c̄2
j ly

2
l = f (x̂) (2.9)

wherex̂ is an incumbent solution. Then we have a valid cutting plane (Tuy’s cutting
plane)

n∑
l=1

yl/ȳl > 1. (2.10)
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Let us show that we usually have a deeper cut whenp is substantially smaller
thann. To see this, let̄yl(r) be the nonnegative solution as the equation (2.9) when
p = r. Then

yl(r) =
[
c̄0l +

√
c̄2

0l + 2al(r)(f̃ − f̂ )
]
/al(r)

wheref̂ = f (x̂), f̃ = f (x̃) andal(r) =∑r
j=1 c̄

2
j l. Hence

αl(r) ≡ ȳl (r)/yl(n)

= al(n)

al(r)

c̄0l +
√
c̄2

0l + 2al(r)(f̃ − f̂ )
c̄0l +

√
c̄2

0l + 2al(n)(f̃ − f̂ )

>
al(n)

al(r)

√√√√ c̄2
0l + 2al(r)(f̃ − f̂ )
c̄2

0l + 2al(n)(f̃ − f̂ )

>

√
al(n)

al(r)
> 1

by noting thatc̄ol > 0, al(n) > al(r) andf̃ − f̂ > 0. As demonstrated by a series
of numerical experiments using randomly generated problems, we usually have

al(n)

al(r)
≈ n

r

as expected whenn� r. This means that we have a substantially deeper cut when
the rankp is small compared withn.

2.2. ROSEN’ S CUTTING PLANE

Tuy’s cutting plane eliminates a portion of the feasible region in the neighborhood
of a locally optimal extreme point. Thus, it may be called a “boundary” cut. Rosen’s
cutting plane (1983), on the other hand, is an “interior” cut, which eliminates a
hyperrectangle whose center is located at the global maximum of the objective
function.

Let us consider the following rankp concave quadratic programming problem:

QP1 :

∣∣∣∣∣∣∣
minimize −

p∑
i=1

x2
i

subject to Ax 6 b

(2.11)

where the feasible region is assumed to be compact.
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Figure 2. Rosen’s cutting plane.

Let x̂ and f̂ be the incumbent solution and the associated function value, re-
spectively. We consider the set

E[f̂ ] = {x ∈ Rn|f (x) > f̂ } (2.12)

which is a parallelepiped whose projectionEp(f̂ ) into (x1, x2, . . . , xp) space is a
sphere. LetS be the largest hypercube inscribingEp(f̂ ) denoted by

S = {x| − α 6 xi 6 α, i = 1,2, . . . , p} (2.13)

In view of the concavity off , we have

min{f (x)|x ∈ X0 ∩ S} > f̂ (2.14)

whereX0 = {x ∈ Rn|Ax 6 b}. Therefore, we can partition the original problem
QP1 into the following 2p subproblems.

QP+[j ]

∣∣∣∣∣∣∣∣∣
minimize −

p∑
i=1

x2
i

subject to Ax 6 b

xj > α, j = 1, . . . , p

(2.15)

QP−[j ]

∣∣∣∣∣∣∣∣∣
minimize −

p∑
i=1

x2
i

subject to Ax 6 b

xj 6 −α, j = 1, . . . , p

(2.16)

Figure 2 describes the essence of Rosen’s cutting plane when rankp = 2. We
see that a significant portion of the feasible region is eliminated.
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Figure 3. Generalized Rosen’s cutting plane.

Rosen’s cutting plane can be extended to a problem with a linear term in the
objective function:

QP2 :

∣∣∣∣∣∣∣
minimize −

p∑
i=1

x2
i − xp+1

subject to Ax 6 b

(2.17)

We will assume without loss of generality that

min{xp+1|Ax 6 b} = 0

ThenE[f̂ ] is a paraboloid whose bottom surface is located atxp+1 = 0. As before,
we can decompose the original problemQP2 into a number of subproblems by
eliminating the largest hypertrapezoid. By an easy arithmetic, we find that the
largest hypertrapezoid is in fact a htyporcone as depicted in Figure 3.

As a result, the problemQP2 is decomposed into 2p subproblems generated
by adding a linear constraint corresponding to each one of the faces of the cone.
The advantage of Rosen’s cutting plane method is that a significant portion of
the feasible region will be eliminated when the rankp of the problem is small
compared ton.

3. Cutting plane/tabu-search algorithms

In this section, we will propose a heuristic algorithm for solving a concave quadratic
programming problem:∣∣∣∣ minimize ctx + 1

2x
tQx

subject to Ax 6 b
(3.1)
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wherec ∈ Rn, Q ∈ Rn×n, A ∈ Rm×n, b ∈ Rm. We assume that the rankp of the
negative semi-definite matrixQ is small compared ton and that the feasible region

X0 = {x ∈ Rn|Ax 6 b} (3.2)

is bounded.
The underlying idea of the algorithm is described as follows. We first solve a

series of linear programming problems

(LP )k

∣∣∣∣ minimize (ck)tx

subject to Ax 6 b
(3.3)

whereck, (k = 1,2, . . . ,K) are given set of vectors inRn. Let xk be an optimal
basic solution of(LP )k and let

V = {x1, x2, . . . , xK } (3.4)

We will choose a sequence of vectorsck ’s in such a way thatV is a set of points
well scattered overX0.

Let x0 ∈ V be the starting point of a cutting plane/tabu-search method for
locating a “good” extreme point solution of the problem (3.1), in which the tabu-list
consists of those vertices

(a) which have been eliminated by Tuy’s cuts added during the course of com-
putation, and

(b) which are the set of extreme points ofX0 newly generated by Tuy’s cuts
which do not belong toV0, the set of extreme points ofX0.

Those vertices satisfying condition (a) cannot be superior to the incumbent solution
by the definition of Tuy’s cut, while those vertices satisfying the condition (b) can
be ignored in the search process because there is at least one optimal solution of
(3.1) inV0.

The general steps of our algorithm are given below.

ALGORITHM TT (Tuy’s cutting plane/tabu-search algorithm):
Step 1. Generate a number of verticesxj ∈ V0(j = 1, . . . ,K) by solving a

series of linear programming problems: minimize{(ck)tx|Ax 6 b}, (k =
1, . . . ,K) whereK is some positive integer. Save these vertices to the set
namedV;

Step 2. Let f̂ = min{f (xk)|k = 1, . . . ,K}, X0 = {x|Ax 6 b}, tabu-list = ∅,
k = 0;

Step 3. Choose a vertexv of the setV. If v is tabooed, thenV := V − {v}. If all
vertices ofV are tabooed, then go to Step 7;

Step 4. Generate a “good” vertexx̃ of Xk by a local search starting atv and
traversing through non-tabooed neighboring vertices. Iff (x̃) < f̃ , then
f̂ = f (x̃), x̂ = x̃;
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Figure 4. Tuy’s cut/tabu-search algorithm.

Step 5. Generate Tuy’s cutting planeatcutx 6 bcut .

Step 6. Xk+1 = Xk ∩ {x|aTcut x 6 bcut }, k = k + 1. Update the tabu-list and goto
Step 3.

Step 7. Terminate the algorithm.

Let us discuss Step 4 of this algorithm in more detail. In the first step, we apply
tabu-search starting from an initial vertex selected from the setV, and calculate a
locally optimal vertex by traversing the neighboring vertices by applying pivoting
operations (Chvatál, 1983). At this vertex, we generate a Tuy’s cutting plane. At
thek-th step, we must check every vertex whether it is tabooed or not. Among the
adjacent vertices which are not tabooed, we move to the vertex whose objective
function value is the smallest. If this vertex is the smallest vertex among its non-
tabooed neighbors, then we regard this vertex as “good” vertex and generate a
Tuy’s cut.

Figure 4 shows an example of this scheme in two-dimensional space. We first
look for a “real” locally optimal vertexx1 and generate the 1st Tuy’s cutting plane.
Then, we select one vertexx3 from the setV. In this tabu-search, the vertexx2 and
new vertexv1 are tabooed by the 1st cut, so we cannot move fromx3 to x2. The
vertexx3 is considered as a “good” vertex, and we generate the 2nd cutting plane
at this vertex.

As mentioned in Section 2, Tuy’s cutting plane eliminates a part of the feasible
region near the boundary. On the other hand, Rosen’s cutting plane eliminates
the interior of the feasible region. Therefore we will be able to generate an even
more powerful algorithm by combining these two types of cutting planes. In this
algorithm, we first eliminate the interior of the feasible region by Rosen’s hyper-
rectangle cut and partition the original problem into 2p subproblems, and then
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apply Tuy’s cutting plane/tabu-search method discussed in Section 3.1 to each
subproblem.

When solving the problem (3.1), we may add generalized Rosen’s hyperrectan-
gle cuts using the side-faces of the hypercone (Figure 3).

ALGORITHM TRT (Tuy–Rosen cutting plane/tabu-search algorithm):
Step 1. Generate a number of verticesxj ∈ V0(j = 1, . . . ,K) by solving a

series of linear programming problems: minimize{(ck)tx|Ax 6 b}, (k =
1, . . . ,K) whereK is some positive integer. Save these vertices to the set
namedV;

Step 2. Let f̂ = min{f (xk)|k = 1, . . . ,K}, X0 = {x|Ax 6 b}, tabu-list = ∅,
k = 0;

Step 3. Partition the feasible regionX0 into 2p subregions by Rosen’s hyperrec-
tangle cut;

Step 4. Apply Algorithm TT to each subproblem whose feasible region is non-
empty.

4. Results of computational experiments

We tested AlgorithmTT and AlgorithmTRT using five different classes of low
rank concave quadratic programming problems. These test problems are the ones
which have been proved to be difficult for Tuy’s cutting plane algorithm and for
Rosen–Tuy cutting plane algorithm without using tabu-search procedure (Konno
and Saitoh, 1996).

We wanted to check whether a globally optimal solution has really been ob-
tained by our heuristic algorithm. Therefore we had to limit the experiment to
small scale problems because we have to enumerate all extreme points to identify
a globally optimal solution

(A) PROBLEM DATA

Class I. m30n10

A ∈ R30×10, Aij = rand[−5,5], b = e;
Class II. n10cube

A =
[
I

−I
]
T −1 ∈ R20×10, Tij = rand[−5,5], b = e;

Class III. n20cube

A =
[
I

−I
]
T −1 ∈ R40×20, Tij = rand[−5,5], b = e;
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Class IV. n30cube

A =
[
I

−I
]
T −1 ∈ R60×30, Tij = rand[−5,5], b = e;

Class V. n50cube

A =
[
I

−I
]
T −1 ∈ R100×50, b =

[
b1

b2

]
, b1 = rand[−5,5],

b2 = b1+ rand[2,12];
where rand[α, β] means a random number uniformly distributed in the interval
[α, β].

The linear constraints of n10cube, n20cube and n30cube are generated by dis-
torting a hypercube

S = {x ∈ Rn| − 16 xi 6 1, i = 1, . . . , n}
by applying a random affine transformation in such a way as to contain the origin in
its interior as in Konno and Saitoh (1996). Therefore, the feasible region contains
exactly 2n vertices for which we can calculate the globally optimal solution by
enumerating all vertices. On the other hand, the feasible region of n50cube are
hyper-boxes:

X = {x ∈ Rn|li 6 xi 6 ui, i = 1, . . . , n}
Therefore, we can easily calculate the globally optimal solution.

(B) GENERATION OF THE EXTREME POINT SOLUTIONS

To start the algorithm, we have to generate a number of vertices ofX0, which
are well scattered overX0. How to chooseK, the number of vertices and vectors
ck(k = 1, . . . ,K) are of significant importance for achieving good performance.
One possible strategy would be to generateck ’s randomly. Unfortunately, however
there is no definite criteria for these decisions unless we conduct a large scale
systematic experiment.

Therefore we employed an admittedly ad-hoc strategy: Generate 2n2 vertices
by solving the following linear programming problems.

LP+[i]
∣∣∣∣ minimize xi

subject to Ax 6 b
LP−[i]

∣∣∣∣ minimize xi
subject to Ax 6 b

LP+[ij ]
∣∣∣∣ minimize xi + xj

subject to Ax 6 b
LP−[ij ]

∣∣∣∣ minimize xi + xj
subject to Ax 6 b
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Table 1. Number of problems (of 20) were solved

QP1 QP2

rank Algorithm TT Algorithm TRT Algorithm TT Algorithm TRT

m30n10

3 (20,0) (20,0) (20,0) (20,0)

4 (20,0) (20,0) (20,0) (20,0)

5 (20,0) (20,0) (20,0) (20,0)

6 (20,0) (20,0) (20,0) (20,0)

7 (20,0) (20,0) (20,0) (20,0)

8 (20,0) (20,0) (20,0) (20,0)

9 (20,0) (20,0) (20,0) (20,0)

n10cube

3 (20,0) (20,0) (20,0) (20,0)

4 (20,0) (20,0) (20,0) (20,0)

5 (20,0) (20,0) (20,0) (20,0)

6 (20,0) (20,0) (20,0) (20,0)

7 (20,0) (20,0) (20,0) (20,0)

8 (20,0) (20,0) (20,0) (20,0)

9 (19,0) (20,0) (19,0) (20,0)

n20cube

3 (20,0) (20,0) (20,0) (20,0)

4 (20,0) (20,0) (20,0) (20,0)

5 (20,0) (20,0) (20,0) (20,0)

6 (20,0) (20,0) (20,0) (20,0)

7 (20,0) (20,0) (20,0) (20,0)

8 (18,1) (20,0) (17,1) (20,0)

9 (18,1) (20,0) (17,2) (20,0)

n30cube

3 (20,0) (20,0) (18,0) (20,0)

4 (14,6) (20,0) (13,6) (20,0)

5 (3,17) (20,0) (2,17) (20,0)

6 (0,20) (20,0) (0,20) (20,0)

7 (0,20) (20,0) (0,20) (20,0)

n50cube

3 (20,0) (20,0) (20,0) (20,0)

4 (20,0) (20,0) (20,0) (20,0)

5 (20,0) (20,0) (20,0) (20,0)

6 (20,0) (20,0) (20,0) (20,0)

7 (20,0) (20,0) (20,0) (20,0)
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Table 2. Average CPU time (sec)

QP1 QP2

rank Algorithm TT Algorithm TRT Algorithm TT Algorithm TRT

m30n10

3 3.50 (0.559) 3.20 (0.392) 3.54 (0.658) 3.33 (0.537)

4 3.60 (0.626) 3.40 (0.594) 3.52 (0.603) 3.64 (0.836)

5 3.68 (0.673) 3.64 (0.769) 3.82 (0.834) 4.10 (1.369)

6 3.76 (0.615) 3.90 (0.935) 3.76 (0.661) 4.11 (1.082)

7 3.84 (0.733) 4.39 (1.259) 3.84 (0.721) 4.59 (1.595)

8 3.88 (0.736) 4.63 (1.458) 3.92 (0.793) 5.07 (2.031)

9 3.97 (0.822) 4.87 (1.772) 4.03 (0.761) 5.24 (2.228)

n10cube

3 1.08 (0.109) 1.15 (0.098) 1.09 (0.097) 1.13 (0.095)

4 1.13 (0.098) 1.31 (0.134) 1.16 (0.093) 1.34 (0.154)

5 1.18 (0.099) 1.55 (0.185) 1.16 (0.097) 1.56 (0.203)

6 1.19 (0.109) 1.69 (0.241) 1.19 (0.106) 1.67 (0.216)

7 1.26 (0.126) 1.93 (0.295) 1.25 (0.135) 1.95 (0.307)

8 1.32 (0.117) 2.17 (0.238) 1.26 (0.101) 2.30 (0.280)

9 1.29 (0.115) 2.48 (0.392) 1.30 (0.128) 2.43 (0.365)

n20cube

3 43.23 (2.826) 41.09 (2.713) 42.88 (2.486) 40.64 (2.332)

4 48.12 (3.542) 46.48 (3.499) 47.69 (3.596) 46.85 (3.305)

5 54.51 (6.023) 55.47 (4.536) 52.60 (4.536) 54.50 (3.573)

6 59.90 (5.960) 68.39 (6.415) 58.96 (5.558) 66.49 (5.348)

7 67.52 (8.373) 86.22 (9.162) 66.03 (7.459) 84.61 (9.717)

8 74.62 (10.37) 105.86 (12.88) 71.22 (8.780) 103.13 (13.12)

9 75.19 (10.61) 121.69 (17.92) 74.10 (10.59) 118.43 (17.42)

n30cube

3 420.22 (27.06) 361.81 (14.14) 423.81 (32.31) 360.05 (11.94)

4 536.06 (43.57) 430.47 (23.18) 533.56 (44.81) 431.97 (22.97)

5 605.59 (42.82) 550.48 (55.17) 612.90 (44.36) 543.17 (50.24)

6 654.07 (48.14) 685.34 (93.59) 651.37 (47.30) 698.06 (90.20)

7 695.78 (41.82) 896.23 (123.5) 686.69 (43.49) 893.95 (119.4)

n50cube

3 90.74 (14.55) 54.78 (11.88) 97.25 (14.39) 59.22 (19.91)

4 106.75 (20.61) 60.90 (20.75) 109.95 (23.19) 61.27 (17.52)

5 127.46 (28.05) 65.60 (13.84) 131.29 (33.63) 68.24 (13.29)

6 151.64 (38.37) 73.67 (21.61) 155.37 (42.67) 74.03 (20.90)

7 161.63 (34.04) 80.41 (20.84) 162.56 (40.32) 81.77 (19.95)
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Table 3. Average number of cuts added

QP1 QP2

rank Algorithm TT Algorithm TRT Algorithm TT Algorithm TRT

m30n10

3 16.7 (9.85) 8.3 (5.69) 14.4 (7.95) 9.3 (6.52)

4 18.7 (9.42) 12.9 (8.44) 17.2 (9.23) 15.2 (11.15)

5 21.2 (10.95) 18.7 (13.15) 21.7 (11.58) 23.6 (18.78)

6 23.0 (10.77) 23.6 (15.65) 21.5 (10.63) 26.3 (17.33)

7 25.2 (13.52) 32.5 (21.67) 23.2 (11.77) 33.2 (22.49)

n10cube

3 10.8 (3.97) 10.8 (4.08) 10.9 (4.14) 10.9 (4.28)

4 13.8 (3.88) 18.9 (5.21) 14.2 (3.69) 18.8 (5.12)

5 15.7 (4.05) 28.4 (8.33) 15.6 (4.25) 28.6 (8.30)

6 17.8 (4.53) 36.9 (10.9) 17.8 (4.46) 36.3 (10.2)

7 19.0 (4.61) 47.4 (12.2) 19.3 (4.84) 47.2 (12.0)

n20cube

3 40.0 (10.62) 22.9 (11.88) 38.5 (8.92) 22.6 (7.37)

4 60.9 (13.19) 44.1 (20.75) 59.2 (12.29) 44.2 (11.3)

5 83.2 (18.24) 75.6 (13.84) 78.8 (15.90) 73.8 (14.7)

6 103.1 (17.01) 114.2 (21.61) 100.0 (17.23) 112.7 (13.4)

7 128.2 (23.34) 169.3 (20.84) 123.0 (20.55) 164.2 (28.6)

n30cube

3 94.05 (22.75) 37.4 (11.2) 94.75 (23.96) 35.2 (8.86)

4 174.65 (22.89) 88.9 (14.1) 173.98 (23.51) 89.3 (13.8)

5 197.1 (9.20) 159.3 (31.4) 197.8 (9.37) 158.6 (30.7)

6 > 200 (—) 241.1 (44.1) > 200 (—) 238.6 (41.1)

7 > 200 (—) 327.7 (66.5) > 200 (—) 338.5 (54.1)

n50cube

3 90.7 (14.55) 48.6 (20.3) 97.3 (14.39) 50.9 (23.4)

4 106.8 (20.61) 55.4 (23.7) 106.8 (20.61) 55.5 (21.9)

5 127.4 (28.05) 69.8 (17.0) 131.3 (33.63) 73.8 (16.6)

6 151.6 (38.37) 84.2 (27.3) 155.4 (42.67) 83.7 (27.2)

7 161.0 (34.04) 99.7 (29.4) 162.6 (40.32) 98.7 (28.1)
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wherei, j = 1,2, . . . , n, i 6= j .

(C) COMPUTATIONAL RESULTS

The first number in the bracket of Table 1 shows the number of problems out of 20
tested problems successfully solved by our algorithms. The second number in the
bracket shows the number of problems in which all vertices of setV could not be
eliminated after adding at most 200 cuts to each (sub)problem.

We see from these data that Algorithm TRT could successfully solve all tested
problems. This is a remarkable improvement over Algorithm TT which in turn
performs much better than the cutting plane method proposed by Konno and Saitoh
(1996).

These results show that Algorithm TRT can serve as a very good heuristic ap-
proach for solving a large scale concave quadratic programming problem whose
rank is relatively small.

Table 2 shows the average CPU time and its standard deviation for solving
twenty test problems. Programs are coded in C language and run at
MicroSPARC/85MHz.

We can see that for m30n10, n10cube, n20cube and n30cube, the average CPU
time by Algorithm TRT is about the same as by Algorithm TT. When the rankp is
greater than 4, then Algorithm TT becomes a little faster, but the average CPU time
by Algorithm TRT is about one half of Algorithm TT for n50cube. This is due to
the fact that two thirds of subproblems generated by Rosen’s hyperrectangle cuts
become infeasible.

Also, we observe from this that the computation time is an increasing function
of the rankp. This is primarily due to the fact that Tuy’s cut tends to become
shallower as the rankp increases (Konno and Saitoh, 1996).

Table 3 shows the average number and standard deviation of Tuy’s cuts adds
before all vertices ofV were eliminated.

5. Conclusions and the future direction of research

In this paper we proposed a heuristic algorithm for solving low rank concave
quadratic programming problems, whose components are (i) Tuy’s concavity cuts,
(ii) Rosen’s hyperrectangle cut and (iii) tabu-search. We demonstrated that this
algorithm performs very well for small-to- medium scale problems.

The first reason of this excellent performance is that bothy Tuy’s cut and Rosen’s
cut tend to eliminate a larger portion of the feasible region when the rank of the
problem is small as discussed in Section 2.

The second reason is that we improved the effectiveness of local search by
ignoring those vertices which cannot be a candidate of a globally optimal solution.
In particular, we prevented the common phenomena of the cutting plane algorithm
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that it tends to get trapped in a small local region, by ignoring the newly generated
vertices.

We believe that this approach would also work well for a class of low rank (not
necessarily quadratic) concave programming problems. We are now applying this
class of algorithms to the minimization of a low rank cubic concave function over
a polytope resulting from a class of financial optimization, whose result will be
reported subsequently.
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